Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642788

RESUMEN

In this study, we developed polydopamine (PDA)-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds for subchondral bone regeneration. These polymeric scaffolds were then coated with ß-Lactoglobulin (ß-LG) at concentrations of 1 mg/ml and 2 mg/ml. Morphological analysis indicated a homogeneous coating of the ß-LG layer on the surface of network-like scaffolds. The ß-LG-coated scaffolds exhibited improved swelling capacity as a function of the ß-LG concentration. Compared to ADA-GEL/PDA scaffolds, the ß-LG-coated scaffolds demonstrated delayed degradation and enhanced biomineralization. Here, a lower concentration of ß-LG showed long-lasting stability and superior biomimetic hydroxyapatite mineralization. According to the theoretical findings, the single-state, representing the low concentration of ß-LG, exhibited a homogeneous distribution on the surface of the PDA, while the dimer-state (high concentration) displayed a high likelihood of uncontrolled interactions. ß-LG-coated ADA-GEL/PDA scaffolds with a lower concentration of ß-LG provided a biocompatible substrate that supported adhesion, proliferation, and alkaline phosphatase (ALP) secretion of sheep bone marrow mesenchymal stem cells, as well as increased expression of osteopontin (SPP1) and collagen type 1 (COL1A1) in human osteoblasts. These findings indicate the potential of protein-coated scaffolds for subchondral bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study addresses a crucial aspect of osteochondral defect repair, emphasizing the pivotal role of subchondral bone regeneration. The development of polydopamine-functionalized alginate dialdehyde-gelatine (ADA-GEL) scaffolds, coated with ß-Lactoglobulin (ß-LG), represents a novel approach to potentially enhance subchondral bone repair. ß-LG, a milk protein rich in essential amino acids and bioactive peptides, is investigated for its potential to promote subchondral bone regeneration. This research explores computationally and experimentally the influence of protein concentration on the ordered or irregular deposition, unravelling the interplay between coating structure, scaffold properties, and in-vitro performance. This work contributes to advancing ordered protein coating strategies for subchondral bone regeneration, providing a biocompatible solution with potential implications for supporting subsequent cartilage repair.

2.
J Mater Sci Mater Med ; 35(1): 4, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206473

RESUMEN

This paper focuses on the synthesis of nano-oxali-palladium coated with turmeric extract (PdNPs) using a green chemistry technique based on the reduction in the Pd (II) complex by phytochemicals inherent in turmeric extract. PdNPs were examined and characterized using Field Emission Scanning Electron Microscopy (FESEM), Dynamic Light Scattering (DLS), Fourier Transform Infrared (FTIR), and Atomic Force Microscopy (AFM). Using different spectroscopic and molecular dynamics simulations, a protein-binding analysis of the produced nanoparticle was conducted by observing its interaction with human serum albumin (HSA). Lastly, the cytotoxic effects and apoptotic processes of PdNPs were studied against the HCT116 human colorectal cell line using the MTT assay and flow cytometry tests. According to the findings, PdNPs with spherical and homogenous morphology and a size smaller than 100 nm were generated. In addition, they can induce apoptosis in colorectal cancer cells in a dose-dependent manner with a lower Cc50 (78 µL) than cisplatin and free oxali-palladium against HCT116 cells. The thermodynamic characteristics of protein binding of nanoparticles with HSA demonstrated that PdNPs had a great capacity for quenching and interacting with HSA through hydrophobic forces. In addition, molecular dynamics simulations revealed that free oxali-palladium and PdNP attach to the same area of HSA via non-covalent interactions. It is conceivable to indicate that the synthesized PdNPs are a potential candidate for the construction of novel, nature-based anticancer treatments with fewer side effects and a high level of eco-friendliness.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Oxalidaceae , Humanos , Unión Proteica , Paladio , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico
3.
Toxicol Appl Pharmacol ; 477: 116695, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739321

RESUMEN

Paxlovid is a recent FDA approved specific drug for COVID-19. Extensive prescription of Paxlovid could induce potential synthetic cytotoxicity with drugs. Herein, we aimed to examine pairwise synthetic cytotoxicity between Paxlovid and 100 frequently FDA approved small molecule drugs. Liver cell line HL-7702 or L02 was adopted to evaluate synthetic cytotoxicity between Paxlovid and the 100 small molecule drugs. Inhibitory concentration IC-10 and IC-50 doses for all the 100 small molecule drugs and Paxlovid were experimentally acquired. Then, pairwise synthetic cytotoxicity was examined with the fixed dose IC-10 for each drug. The most 4 significant interactive pairs (2 positively interactive and 2 negatively interactive) were further subjected to molecular docking simulation to reveal the structural modulation with Caspase-8, a key mediator for cell apoptosis.

4.
Anal Chem ; 95(33): 12264-12272, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37553082

RESUMEN

De novo design of peptides that bind specifically to functional proteins is beneficial for diagnostics and therapeutics. However, complex permutations and combinations of amino acids pose significant challenges to the rational design of peptides with desirable stability and affinity. Herein, we develop a computational-based evolution method, namely, peptidomimetics-driven recognition elements design (PepDRED), to derive hemoglobin-inspired peptidomimetics. PepDRED mimics the natural evolutionism pipeline to generate stable apovariant (AVs) structures for wild-type counterparts via automated point mutations and validates their efficiency through free binding energy analysis and per residue energy decomposition analysis. For application demonstration, we applied PepDRED to design de novo peptides to bind FhuA, a typical TonB-dependent transporter (TBDT). TBDTs are Gram-negative bacterial outer membrane proteins responsible for iron transport and vital for bacterial resistance. PepDRED generated a pool of AVs and proceeded to reach an optimized peptide, AV440, with a remarkable binding affinity of -21 kcal/mol. AV440 is ∼2.5-fold stronger than the existing FhuA inhibitor Microcin J25. Network energy analysis further unveils that incorporating methionine (M42) in the N-terminal region significantly enhances inter-residue contacts and binding affinity. PepDRED offers a prompt and efficient in silico approach to develop potent peptide candidates for target proteins.


Asunto(s)
Proteínas de Escherichia coli , Peptidomiméticos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Péptidos/metabolismo , Unión Proteica , Proteínas Bacterianas/química
5.
Angew Chem Int Ed Engl ; 62(45): e202309806, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37653561

RESUMEN

Mass spectrometry has emerged as a mainstream technique for label-free proteomics. However, proteomic coverage for trace samples is constrained by adsorption loss during repeated elution at sample pretreatment. Here, we demonstrated superparamagnetic composite nanoparticles functionalized with molecular glues (MGs) to enrich proteins in trace human biofluid. We showed high protein binding (>95 %) and recovery (≈90 %) rates by anchor-nanoparticles. We further proposed a Streamlined Workflow based on Anchor-nanoparticles for Proteomics (SWAP) method that enabled unbiased protein capture, protein digestion and pure peptides elution in one single tube. We demonstrated SWAP to quantify over 2500 protein groups with 100 HEK 293T cells. We adopted SWAP to profile proteomics with trace aqueous humor samples from cataract (n=15) and wet age-related macular degeneration (n=8) patients, and quantified ≈1400 proteins from 5 µL aqueous humor. SWAP simplifies sample preparation steps, minimizes adsorption loss and improves protein coverage for label-free proteomics with previous trace samples.


Asunto(s)
Proteínas , Proteómica , Humanos , Proteómica/métodos , Péptidos , Espectrometría de Masas/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Proteoma/análisis
6.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904309

RESUMEN

The development of peptide-based materials has emerged as one of the most challenging aspects of biomaterials in recent years. It has been widely acknowledged that peptide-based materials can be used in a broad range of biomedical applications, particularly in tissue engineering. Among them, hydrogels have been attracting considerable interest in tissue engineering because they mimic tissue formation conditions by providing a three-dimensional environment and a high water content. It has been found that peptide-based hydrogels have received more attention due to mimicking proteins, particularly extracellular matrix proteins, as well as the wide variety of applications they are capable of serving. It is without a doubt that peptide-based hydrogels have become the leading biomaterials of today owing to their tunable mechanical stability, high water content, and high biocompatibility. Here, we discuss in detail various types of peptide-based materials, emphasizing peptide-based hydrogels, and then we examine in detail how hydrogels are formed, paying particular attention to the peptide structures that are incorporated into the final structure. Following that, we discuss the self-assembly and formation of hydrogels under various conditions, as well as the parameters to be considered as critical factors, which include pH, amino acid composi- tion within the sequence, and cross-linking techniques. Further, recent studies on the development of peptide-based hydrogels and their applications in tissue engineering are reviewed.

8.
Adv Mater ; 35(26): e2208852, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36633376

RESUMEN

Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Hidrogeles/química , Microfluídica , Cartílago , Microtecnología , Andamios del Tejido/química
9.
Mol Biol Rep ; 49(12): 12063-12075, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36315326

RESUMEN

BACKGROUND: Recently biomaterials utilized for designing scaffolds in tissue engineering are not cost-effective and eco-friendly. As a result, we design and develop biocompatible and bioactive hydrogels for osteo-tissue regeneration based on the natural polysaccharide chitosan. Three distinct hydrogel components were used for this. METHODS: Hydrogels networks were created using chitosan 2% (CTS 2%), carboxymethyl chitosan 2% (CMC 2%), and 50:50 mixtures of CTS and CMC (CTS/CMC 50:50). Furthermore, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), degradation, and swelling behavior of design hydrogels were studied. Also, the cytocompatibility and osteo-differentiation potency were examined by encapsulating mesenchymal stem cells derived from adipose tissue (AMSCs) on the designed hydrogels. RESULTS: According to the findings, our results showed an acceptable pore structure, functional groups, and degradation rate of the designed hydrogels for in vitro evaluation. In addition, employing CMC instead of CTS or adding 50% CMC to the hydrogel component could improve the hydrogel's osteo-bioactivity without the use of external osteogenic differentiation agents. CONCLUSION: The CMC-containing hydrogel not only caused early osteogenesis but also accelerated differentiation to the maturity phase of osteoblasts.


Asunto(s)
Quitosano , Células Madre Mesenquimatosas , Hidrogeles/farmacología , Hidrogeles/química , Quitosano/farmacología , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Ingeniería de Tejidos/métodos , Andamios del Tejido
10.
Front Bioeng Biotechnol ; 10: 940070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003531

RESUMEN

This study utilized extrusion-based 3D printing technology to fabricate calcium-cross-linked alginate dialdehyde-gelatin scaffolds for bone regeneration. The surface of polymeric constructs was modified with mussel-derived polydopamine (PDA) in order to induce biomineralization, increase hydrophilicity, and enhance cell interactions. Microscopic observations revealed that the PDA layer homogeneously coated the surface and did not appear to induce any distinct change in the microstructure of the scaffolds. The PDA-functionalized scaffolds were more mechanically stable (compression strength of 0.69 ± 0.02 MPa) and hydrophilic (contact angle of 26) than non-modified scaffolds. PDA-decorated ADA-GEL scaffolds demonstrated greater durability. As result of the 18-days immersion in simulated body fluid solution, the PDA-coated scaffolds showed satisfactory biomineralization. Based on theoretical energy analysis, it was shown that the scaffolds coated with PDA interact spontaneously with osteocalcin and osteomodulin (binding energy values of -35.95 kJ mol-1 and -46.39 kJ mol-1, respectively), resulting in the formation of a protein layer on the surface, suggesting applications in bone repair. PDA-coated ADA-GEL scaffolds are capable of supporting osteosarcoma MG-63 cell adhesion, viability (140.18% after 7 days), and proliferation. In addition to increased alkaline phosphatase secretion, osteoimage intensity also increased, indicating that the scaffolds could potentially induce bone regeneration. As a consequence, the present results confirm that 3D printed PDA-coated scaffolds constitute an intriguing novel approach for bone tissue engineering.

11.
Front Bioeng Biotechnol ; 10: 967438, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003535

RESUMEN

This study aimed to develop injectable light-assisted thermo-responsive methylcellulose hydrogels filled with sodium humate, which were proposed for photothermal ablation and localized cisplatin delivery. Sodium humate converts light energy from laser beams into thermal energy, which causes methylcellulose to gel, thereby controlling the release of chemotherapy agents. Meanwhile, light emission causes to the photothermal ablation of tumor cells. For determining the optimal production conditions, different concentrations of sodium humate and light emission times were investigated. Results show that hydrogel uniformity is highly dependent on variables. An increase in sodium humate concentration and emission time resulted in a slight reduction in swelling ratio and an increase in durability. According to the simulation conditions, the cisplatin release profile was consistent with a non-Fickian mechanism with a predominant erosion contribution. In conjugation with increasing light emission time and sodium humate content, the storage modulus and viscosity increased, demonstrating hydrogel's sol-gel transition and long-lasting durability. The intrinsic fluorescence spectroscopy study revealed that the hydrogel-model protein complex empowered hydrogel bio-performance. Laser emission and cisplatin release synergistically reduced the number of viable osteosarcoma cell lines, suggesting the possibility of tumor ablation. This study describes the potential of simultaneous photothermal therapy and chemotherapy in osteosarcoma treatment, laying the groundwork for future preclinical and clinical trials.

12.
Front Endocrinol (Lausanne) ; 13: 885507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663327

RESUMEN

Postmenopausal osteoporosis (PMOP) is a kind of primary osteoporosis that is characterized by decreased bone density and strength. Berbamine is a nonbasic quaternary benzylisoquinoline plant alkaloid that has been widely used in the clinic to treat leukopenia in China. We found that berbamine inhibited RANKL-induced osteoclastogenesis of bone marrow-derived macrophages (BMMs) in vitro, which mainly occurred in the middle phase and late phase. The gene and protein expression levels of osteoclast-related molecules, including CTSK, MMP-9, NFATc1, CD44 and DC-STAMP, were also downregulated by berbamine. In vivo, we treated PMOP mice with berbamine for 8 weeks and found that the extent of osteoporosis was alleviated significantly according to micro-CT scanning, hematoxylin-eosin staining, DC-STAMP immunohistochemical staining and TRAP immunohistochemical staining in the distal femurs of the mice. Our findings demonstrate that berbamine has an inhibitory effect on the osteoclastogenesis of BMMs and can prevent bone loss after ovariectomy in vivo. This study provides evidence that berbamine is a potential drug for the prevention and treatment of PMOP.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Resorción Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Alcaloides/farmacología , Alcaloides/uso terapéutico , Animales , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Femenino , Humanos , Ratones , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Transducción de Señal
13.
Chem Sci ; 13(7): 2050-2061, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35308857

RESUMEN

The CRISPR-Cas12a system has been widely applied to genome editing and molecular diagnostics. However, off-target cleavages and false-positive results remain as major concerns in Cas12a practical applications. Herein, we propose a strategy by utilizing the 2'-O-methyl (2'-OMe) modified guide RNA (gRNA) to promote the Cas12a's specificity. Gibbs free energy analysis demonstrates that the 2'-OMe modifications at the 3'-end of gRNA effectively suppress the Cas12a's overall non-specific affinity while maintaining high on-target affinity. For general application illustrations, HBV genotyping and SARS-CoV-2 D614G mutant biosensing platforms are developed to validate the enhanced Cas12a's specificity. Our results indicate that the 2'-OMe modified gRNAs could discriminate single-base mutations with at least two-fold enhanced specificity compared to unmodified gRNAs. Furthermore, we investigate the enhancing mechanisms of the 2'-OMe modified Cas12a systems by molecular docking simulations and the results suggest that the 2'-OMe modifications at the 3'-end of gRNA reduce the Cas12a's binding activity to off-target DNA. This work offers a versatile and universal gRNA design strategy for highly specific Cas12a system development.

14.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267809

RESUMEN

The successful design of a hydrogel for tissue engineering requires a profound understanding of its constituents' structural and molecular properties, as well as the proper selection of components. If the engineered processes are in line with the procedures that natural materials undergo to achieve the best network structure necessary for the formation of the hydrogel with desired properties, the failure rate of tissue engineering projects will be significantly reduced. In this review, we examine the behavior of proteins as an essential and effective component of hydrogels, and describe the factors that can enhance the protein-based hydrogels' structure. Furthermore, we outline the fabrication route of protein-based hydrogels from protein microstructure and the selection of appropriate materials according to recent research to growth factors, crucial members of the protein family, and their delivery approaches. Finally, the unmet needs and current challenges in developing the ideal biomaterials for protein-based hydrogels are discussed, and emerging strategies in this area are highlighted.

15.
Mol Biol Rep ; 49(6): 4595-4605, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35279778

RESUMEN

BACKGROUND: The purpose of this research was to investigate the in vitro osteogenic induction of MG-63 cells using topography and collagen protein printed on polydimethyl siloxane (PDMS). METHODS: ALKALINE PHOSPHATASE (ALP) assay, calcium content, alizarin red staining, immunocytochemistry (ICC), and real-time polymerase chain reaction (PCR) were used to evaluate the osteo-differentiation of human adipose stem cells on the MG-63 cell pattern, MG-63 cells/collagen pattern, and collagen pattern. Also, the differentiated cell shape was studied by crystal violet staining and scanning electron microscopy (SEM). RESULTS: Our results showed that calcium content and ALP activity increased significantly on the MG-63 cells /collagen pattern (P < 0.05). The gene expression analysis (ALKALINPHOSPHATASE, COLLAGEN1 and OSTEOCALCIN) and bone marker protein expression (OSTEOCALCIN) confirmed the osteo differentiation of adipose stem cells (ADSCs) seeded on the imprinting substrate. DISCUSSION: Cell and molecular printing enhanced osteogenic development of adipose stem cells, according to our findings.


Asunto(s)
Calcio , Ingeniería de Tejidos , Tejido Adiposo , Calcio/metabolismo , Diferenciación Celular , Células Cultivadas , Colágeno/metabolismo , Humanos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis , Ingeniería de Tejidos/métodos
16.
Phenomics ; 2(1): 18-32, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36939771

RESUMEN

MicroRNAs (miRNAs), as the small, non-coding, evolutionary conserved, and post-transcriptional gene regulators of the genome, have been highly associated with various diseases such as cancers, viral infections, and cardiovascular diseases. Several techniques have been established to detect miRNAs, including northern blotting, real-time polymerase chain reaction (RT-PCR), and fluorescent microarray platform. However, it remains a significant challenge to develop sensitive, accurate, rapid, and cost-effective methods to detect miRNAs due to their short size, high similarity, and low abundance. The electrochemical biosensors exhibit tremendous potential in miRNA detection because they satisfy feature integration, portability, mass production, short response time, and minimal sample consumption. This article reviewed the working principles and signal amplification strategies of electrochemical DNA biosensors summarized the recent improvements. With the development of DNA nanotechnology, nanomaterials and biotechnology, electrochemical DNA biosensors of high sensitivity and specificity for microRNA detection will shortly be commercially accessible.

17.
Food Chem ; 367: 130617, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34352696

RESUMEN

The abuse application of glyphosate can result in a potential hazard for environment and human, however its ultrasensitive detection remains challenging. Herein, a Cu2+ modulated DNA-templated silver nanoclusters (DNA-AgNCs) sensor was constructed to sensitively determine glyphosate based on the turn-on fluorescence strategy. The fluorescence quenching of DNA-AgNCs occurred with the existence of Cu2+. Upon the presence of glyphosate, the functional groups on the surface of glyphosate could chelate with Cu2+, following the fluorescence recovery of DNA-AgNCs. Through the stoichiometric methods, we unveil that Cu2+-trigged fluorescence quenching mode is a combination of static and dynamic quenching with the static mode being predominant. In DNA-AgNCs/Cu2+ system, the carboxylate, amine, and phosphonate groups of glyphosate interact with Cu2+ through chelation, in which the carboxylate oxygen, the phosphonate oxygen atoms, and the monoprotonated secondary amine nitrogen atom and Cu2+ form chelate rings. This fluorescence sensor showed a desired linearity of glyphosate analysis under the optimum conditions, ranging from 15 to 100 µg/L with a low detection down to 5 µg/L. Moreover, the proposed sensor was successfully utilized to measure glyphosate in real samples, indicating a promising application in pesticide residues detection.


Asunto(s)
Nanopartículas del Metal , Plata , ADN/genética , Glicina/análogos & derivados , Humanos , Glifosato
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120736, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923375

RESUMEN

Photothermal therapy is one of the promising approaches toward cancer treatment. To date, several compounds have been developed for this application, among which nanoparticles are attracting ever-increasing attention. One of the obstacles in developing efficient photothermal nanoparticle agents is their off-target effect which is mainly mediated via non-specific interactions with proteins. Such interaction not only reduces the bioavailability of the agent but also will cause protein aggregation that can be lethal. So, gaining knowledge on the mechanisms mediating such interactions will facilitate development of more effective agents. Our last studies showed the mechanism of action of two modified gold nanoparticles, folic acid functionalized gold nanoparticles (FA-AuNPs) and gold shelled Fe3O4 nanoparticles (AuFeNPs), as photothermal agents. In the current work, we focus on the interaction of these two NPs with human serum albumin (HSA) and human hemoglobin (Hb) as model proteins. The complex formation between NPs and proteins was investigated by fluorescence spectroscopy, dynamic light scattering and circular dichroism. Our data distinguishes the very distinct mode of interaction of charged and neutral NPs with proteins. While the interaction of neutral AuFeNP to proteins is protein dependent, charged nanoparticles FA-AuNP interact indistinguishably with all proteins via electrostatic interactions. Moreover, complexes obtained from FA-AuNPs with proteins are more stable than that of AuFeNP. However, the secondary structure content of proteins in the presence of NPs indicates the insignificant effect of NPs on the secondary structure of these proteins. Our data propose that the charge functionalization of the NPs is an effective way for modulating the interaction of nanoparticles with proteins.


Asunto(s)
Oro , Nanopartículas del Metal , Dicroismo Circular , Humanos , Estructura Secundaria de Proteína , Electricidad Estática
19.
Adv Healthc Mater ; 11(8): e2102439, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34859964

RESUMEN

The boosting exploitation of graphene oxide (GO) increases exposure risk to human beings. However, as primary defender in the first immune line, neutrophils' mechanism of defensive behavior toward GO remains unclear. Herein, we discovered that neutrophils recognize and defensively degrade GO in a lateral dimension dependent manner. The micrometer-sized GO (mGO) induces NETosis by releasing neutrophil extracellular traps (NETs), while nanometer-sized GO (nGO) elicits neutrophil degranulation. The two neutrophils' defensive behaviors are accompanied with generation of reactive oxygen species and activation of p-ERK and p-Akt kinases. However, mGO-induced NETosis is NADPH oxidase (NOX)-independent while nGO-triggered degranulation is NOX-dependent. Furthermore, myeloperoxidase (MPO) is determinant mediator despite distinct neutrophil phenotypes. Neutrophils release NETs comprising of MPO upon activated with mGO, while MPO is secreted via nGO-induced degranulation. Moreover, the binding energy between MPO and GO is calculated to be 69.8728 kJ mol-1 , indicating that electrostatic interactions mainly cause the spontaneous binding process. Meanwhile, the central enzymatic biodegradation occurs at oxygenic active sites and defects on GO. Mass spectrometry analysis deciphers the degradation products are biocompatible molecules like flavonoids and polyphenols. This study provides fundamental evidence and practical guidance for nanotechnology based on GO, including vaccine adjuvant, implantable devices, and energy storage.


Asunto(s)
Trampas Extracelulares , Lucha , Grafito , Óxido de Magnesio/metabolismo , Neutrófilos , Especies Reactivas de Oxígeno/metabolismo
20.
J Nanobiotechnology ; 19(1): 445, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34949196

RESUMEN

Phosphomolybdate-based nanoparticles (PMo12-based NPs) have been commonly applied in nanomedicine. However, upon contact with biofluids, proteins are quickly adsorbed onto the NPs surface to form a protein corona, which induces the opsonization and facilitates the rapid clearance of the NPs by macrophage uptake. Herein, we introduce a family of structurally homologous PMo12-based NPs (CDS-PMo12@PVPx(x = 0 ~ 1) NPs) capping diverse content of zwitterionic polymer poly (N-vinylpyrrolidone) (PVP) to regulate the protein corona formation on PMo12-based NPs. The fluorescence quenching data indicate that the introduction of PVP effectively reduces the number of binding sites of proteins on PMo12-based NPs. Molecular docking simulations results show that the contact surface area and binding energy of proteins to CDS-PMo12@PVP1 NPs are smaller than the CDS-PMo12@PVP0 NPs. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) is further applied to analyze and quantify the compositions of the human plasma corona formation on CDS-PMo12@PVPx(x = 0 ~ 1) NPs. The number of plasma protein groups adsorption on CDS-PMo12@PVP1 NPs, compared to CDS-PMo12@PVP0 NPs, decreases from 372 to 271. In addition, 76 differentially adsorption proteins are identified between CDS-PMo12@PVP0 and CDS-PMo12@PVP1 NPs, in which apolipoprotein is up-regulated in CDS-PMo12@PVP1 NPs. The apolipoprotein adsorption onto the NPs is proposed to have dysoponic activity and enhance the circulation time of NPs. Our findings demonstrate that PVP grafting on PMo12-based NPs is a promising strategy to improve the anti-biofouling property for PMo12-based nanodrug design.


Asunto(s)
Molibdeno/química , Nanopartículas/química , Ácidos Fosfóricos/química , Povidona/química , Corona de Proteínas/química , Adsorción , Apolipoproteínas/análisis , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Simulación del Acoplamiento Molecular , Propiedades de Superficie , Tensoactivos/química , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...